<table>
<thead>
<tr>
<th>Title</th>
<th>Osteocyte differentiation and the formation of an interconnected cellular network in vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mc Garrigle, M.J.; Mullen, Conleth A.; Haugh, Matthew G.; Voisin, Muriel C.; McNamara, Laoise M.</td>
</tr>
<tr>
<td>Publication Date</td>
<td>2016-05-26</td>
</tr>
<tr>
<td>Publisher</td>
<td>AO Research Institute Davos</td>
</tr>
<tr>
<td>Link to publisher's version</td>
<td>http://dx.doi.org/10.22203/eCM.v031a21</td>
</tr>
<tr>
<td>Item record</td>
<td>http://hdl.handle.net/10379/6220</td>
</tr>
<tr>
<td>DOI</td>
<td>http://dx.doi.org/10.22203/eCM.v031a21</td>
</tr>
</tbody>
</table>
OSTEOCYTE DIFFERENTIATION AND THE FORMATION OF AN INTERCONNECTED CELLULAR NETWORK IN VITRO

M.J. Mc Garrigle1, C.A. Mullen1, M.G. Haugh1, M.C. Voisin1 and L.M. McNamara∗

1 Centre for Biomechanics Research (BMEC), Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway

Abstract

Extracellular matrix (ECM) stiffness and cell density can regulate osteoblast differentiation in two dimensional environments. However, it is not yet known how osteoblast-osteocyte differentiation is regulated within a 3D ECM environment, akin to that existing in vivo. In this study we test the hypothesis that osteocyte differentiation is regulated by a 3D cell environment, ECM stiffness and cell density. We encapsulated MC3T3-E1 pre-osteoblastic cells at varied cell densities (0.25, 1 and 2 × 10^6 cells/mL) within microbial transglutaminase (mtgase) gelatin hydrogels of low (0.58 kPa) and high (1.47 kPa) matrix stiffnesses. Cellular morphology was characterised from phalloidin-FITC and 4′,6-diamidino-2-phenylindole (DAPI) dilactate staining. In particular, the expression of cell dendrites, which are phenotypic of osteocyte differentiation, were identified. Immunofluorescent staining for the osteocytes specific protein DMP-1 was conducted. Biochemical analyses were performed to determine cell number, alkaline phosphatase activity and mineralisation at 2.5 hours, 3, 21 and 56 days. We found that osteocyte differentiation and the formation of an interconnected network between dendritic cells was significantly increased within low stiffness 3D matrices, compared to cells within high stiffness matrices, at high cell densities. Moreover we saw that this network was interconnected, expressed DMP-1 and also connected with osteoblast-like cells at the matrix surface. This study shows for the first time the role of the 3D physical nature of the ECM and cell density for regulating osteocyte differentiation and the formation of the osteocyte network in vitro. Future studies could apply this method to develop 3D tissue engineered constructs with an osteocyte network in place.

Keywords: Osteoblast, osteocyte, interconnected network, three dimensional, cell density, matrix stiffness, in vitro.

Introduction

In bone, osteocyte cells form a complex three-dimensional (3D) communication network that plays a vital role in maintaining bone health by monitoring physical cues arising during load-bearing activity and directing the activity of osteoblasts and osteoclasts to initiate bone formation and resorption (Burger and Klein-Nulend, 1999). Osteocytes are formed when cuboidal-like osteoblasts become embedded within soft secreted osteoid and start to change morphologically to a dendritic shape characteristic of an osteocyte. This transition is accompanied by a loss of cell volume (reduced organelle content) (Knothe Tate et al., 2004; Palumbo et al., 2004) and an increase in the formation and elongation of thin cytoplasmic projections that interconnect with neighbouring osteocytes within the bone ECM and osteoblasts on the surface of the bone (Palazzini et al., 1998; Palumbo, 1986; Mullen et al., 2013; Prideaux et al., 2012; Palumbo et al., 2004). Furthermore, as an osteoblast differentiates to an osteocyte, expression of the osteoblast marker enzyme alkaline phosphatase (ALP) is greatly reduced (Jee, 2001; Mikuni-Takagaki et al., 1995; Nakano et al., 2004) along with an upregulation in dentin matrix protein-1 (DMP-1) (Narayan et al., 2003; Rios et al., 2005). During the transformation from soft secreted osteoid to a mineralised ECM, the embedded osteoblast has been shown to extend out thick cell processes that polarise towards the mineralised matrix layer. These cell processes are believed to be involved in the extrusion of calcifying matrix vesicles and hence the formation of a mineralised osteid matrix. This is followed by the cell extending out dendrites of a longer, thinner nature towards the vascular space, which are believed to have a nutritional function (Barragan-Adjemian et al., 2006; Palumbo, 1986). It is believed that osteocyte cell processes play an important role in monitoring mechanical stimulation of the osteocytes, arising from fluid flow within the lacunocanalicular network and direct mechanical strain of the bone cell membrane (Anderson and Knothe Tate, 2008; Han et al., 2004; Knothe Tate et al., 1998; Knothe Tate et al., 2000; Knothe Tate and Niederer, 1998; McNamara et al., 2009; Verbruggen et al., 2012; Wang et al., 2000; Wang et al., 2005; Wang et al., 2007; Weinbaum et al., 1994; You et al., 2001; Zeng et al., 1994).

Osteogenic differentiation of human mesenchymal stem cells (MSCs) and pre-osteoblasts (MC3T3-E1) has been studied on 2D surfaces (Engler et al., 2006; Przybylewski et al., 2012) and on 3D biomaterials (Correia et al., 2012; Curtin et al., 2012; Gleson et al., 2010; Keogh et al., 2010), which act as tissue engineering (TE) scaffolds for cell attachment and tissue growth. Through these methods important cellular responses have been identified, in particular regulatory mechanisms for cell proliferation,
migration, and matrix production, which provide information that is driving the development of approaches for regenerating bone tissue in vitro as a treatment for large bone defects. It has been shown that substrate (2D) (Engler et al., 2004; Mullen et al., 2013) and matrix (3D) (Tan et al., 2014) stiffnesses are important physical factors that induce a phenotypic shift towards osteogenic differentiation. Indeed, extracellular mechanical cues are recognised as regulators of a variety of cell behaviours such as migration (Zaman and Trapani, 2006), proliferation (Hadjipanayi et al., 2009), and differentiation (Lo et al., 2000; Tan et al., 2014). Moreover, the extracellular mechanical environment can partially direct osteogenic differentiation and mineralisation of a variety of cells including myoblasts (Tan et al., 2014), osteoblasts (Chatterjee et al., 2010), MSCs (Engler et al., 2006; Huebsch et al., 2010; Wang et al., 2012) and embryonic stem cells (Evans et al., 2009). In particular, the effect of varying 2D substrate stiffness on cultured osteoblastic cells has been shown to favour osteocyte differentiation on relatively soft ECM substrates (0.286 kPa) (Mullen et al., 2013), whereas culture on a more rigid substrate (20-40 kPa) led to osteogenic differentiation (Engler et al., 2004).

Cell seeding density has also been shown to be a critical parameter controlling cell proliferation, ECM synthesis and osteogenic signal expression, as it dictates the paracrine signalling distance between cells (Kim et al., 2009; Mullen et al., 2013; Zhou et al., 2011). Using a 2D culture of pre-osteoblastic cells seeded on collagen substrates, we have recently shown that a low cell seeding density was important for dendrite formation and osteogenic differentiation, as indicated by reduced alkaline phosphatase (ALP) activity and increased mineral production (Mullen et al., 2013). In contrast, a high cell density resulted in the attainment of an osteoblastic phenotype, indicated by a spread morphology and high levels of ALP (Mullen et al., 2013).

In vivo, osteoblasts and osteocytes primarily exist within a complex three dimensional (3D) environment (Boukhechba and Balaguer, 2009), and it is known that 3D environment has a significant effect on cell morphology and geometry, as shown in NIH 3T3 fibroblast (Legant et al., 2010), cardiac cells (Soares et al., 2012) and MC3T3-E1 osteoblasts (Murshid et al., 2007). The process of osteocyte dendrite formation within a 3D environment is highly dynamic, as the embedding cells repeatedly extend and retract their dendrites. These “exploratory dendrites” make transient connections with already embedded osteocytes and may allow the osteocyte to position itself an appropriate spacing from other embedded osteocytes to maintain the ordered three dimensional spacing of the osteocyte network (Dallas et al., 2013; Zhang et al., 2006). However, although osteocyte differentiation has been studied in 2D (Mullen et al., 2013), it is not known how biophysical cues, such as matrix stiffness and cell density, control the phenotypic shift from osteoblasts to osteocytes in a 3D environment.

In this study, we test the hypothesis that osteocyte differentiation is regulated by ECM stiffness and cell density within a 3D environment. The effect of extracellular mechanical cues in a 3D environment for osteoblast-osteocyte differentiation is investigated by encapsulating MC3T3-E1 pre-osteoblastic cells homogenously within hydrogels of varying matrix stiffnesses. To investigate the effect of cell density, osteoblast cells are cultured at varying cell densities within each of the hydrogels. Osteocyte differentiation is examined by DMP-1 staining and quantifying cellular morphology, matrix mineralisation and ALP activity.

Methods

Gelatin-mtgase hydrogel preparation

Gelatin-mtgase hydrogels, with a final concentration of 3% w/v gelatin, were prepared by mixing gelatin (type A, 175 Bloom, Sigma-Aldrich, Dublin, Ireland) at 37 °C in αMEM (Sigma-Aldrich) culture medium containing 10% foetal bovine serum (FBS) (Sigma-Aldrich), 100 U/mL penicillin (Sigma-Aldrich), 100 g/mL streptomycin (Sigma Aldrich) and 2 mM L-glutamine (Sigma-Aldrich), to obtain a liquid consistency for easier mixing. Gelatin suspensions were sterile filtered through a 0.22 µm filter (Millipore, Cork, Ireland). Microbial transglutaminase (mtgase) (Activa WM; containing 1% mtgase; Ajinomoto foods Europe S.A.S., Mesnil-Saint-Nicaise, France) crosslinking was carried out by mixing mtgase with the gelatin suspension, allowing to vary hydrogel stiffness by using different concentrations (0.03, 0.06, 0.08, 0.15 and 0.20%) of mtgase per gram of gelatin.

Gelatin-mtgase hydrogel mechanical properties

Unconfined compression testing was used to determine the stiffness of the hydrogels exposed to different concentrations of crosslinking using a tensile tester (2009; Zwick/Roell, Ulm, Germany) fitted with a 10 N load cell. Samples were prepared in silicon isolators (Sigma-Aldrich) that contained 8 wells of diameter 9 mm and height 2.5 mm (n = 8 per stiffness). Silicon isolators were covered with a coverslip (50 × 24 mm) (EU Thermo Scientific, Loughborough, UK) to produce a flat surface after gelation, see Fig.1. Samples were incubated in a bath of phosphate buffered saline (PBS) (Sigma-Aldrich) for 1 h at 37 °C before the coverslip and silicon isolators were removed.

![Fig. 1. Hydrogel fabrication method for mechanical testing.](image)

Unconfined compression testing was performed on samples using a custom made platen attached to a 10 N load cell.
During mechanical testing the gelatin-mtgase hydrogels were held within a bath of PBS at room temperature. Testing was conducted at a strain rate of 10% per minute. The modulus was defined as the slope of a linear fit to the stress-strain curve over 2-5% strain (Harley et al., 2007). Based on the results of these tests, a low and high matrix stiffness were chosen to examine the effects of 3D matrix stiffness on osteoblast differentiation and morphology.

Cell culture embedding in 3-dimensional mtgase hydrogels

MC3T3-E1 pre-osteoblastic cells (Sigma-Aldrich) were cultured under standard conditions (5% CO₂, 37°C). Cells were routinely grown to 70% confluency in T175 culture flasks (Sarstedt Ltd, Wexford, Ireland) containing αMEM culture medium (Sigma-Aldrich), 10% FBS (Sigma-Alrdrich), 100 U/mL penicillin (Sigma-Aldrich), 100 µg/mL streptomycin (Sigma Aldrich) and 2 mM L-glutamine (Sigma Aldrich).

Before encapsulating, MC3T3-E1 cells (Passage 15-16) were detached using trypsin-ethylenediaminetetraacetic acid (EDTA, Sigma-Aldrich) and suspended in supplemented medium at 2 × 10⁶ cells/mL. Varying cell densities (0.25, 1 and 2 × 10⁶ cells/mL, which is approximately 0.4, 1 and 1.6 × 10⁶ cells/cm²) were prepared in separate suspensions. Cell suspensions were then mixed with 6% gelatin suspension and low and high concentrations of mtgase at a ratio of 5:4:1 (v:v:v) to give a low and high matrix stiffness. The final concentration of the mixture was 3% w/v gelatin, (0.25, 1 and 2 × 10⁶ cells/mL) within mtgase concentrations of 0.03 and 0.08% per gram of gelatin. Hydrogel suspensions for biochemical assays and morphology analysis were aliquoted into 96-well plates at 0.071 mL/well. All hydrogels had a height of 2 mm and were allowed to gel at 4°C for 6 min before medium was added.

DNA content

DNA content was evaluated using the Hoechst 33258 DNA assay, which fluorescently labels double-stranded DNA (Sigma-Aldrich), as previously described (Haugh et al., 2011). After 2.5 h, 3, 21 and 56 d of incubation, cell laden hydrogels were washed twice with PBS, frozen and stored at −80°C. Samples were then thawed and digested overnight in papain digest (100 mM sodium phosphate buffer containing 10 mM L-cysteine, 125 µg/mL papain and 5 mM Na₂EDTA (all from Sigma Aldrich) in ddH₂O at pH 6.5 and 60°C). Once the samples were digested, the biochemical assays were performed straight away or stored at −80°C until the assays could be performed. Briefly, 200 µL of Hoechst dye solution was added to 20 µL of digested samples / standards in a 96-well plate in triplicate. Fluorescence was then measured (excitation: 355 nm; emission: 460 nm) using a fluorescence spectrophotometer (Synergy HT Multi-mode microplate reader). Readings were converted to DNA content using a standard curve, according to the manufacturer’s protocol, with samples containing no cells subtracted as background.

Morphological analysis of cell phenotype

Hydrogel constructs were fixed using 4% (w/v) paraformaldehyde (Sigma-Aldrich) after 2.5 h, 21 and 56 d of culture, for 1 h under rotation. Cells within the hydrogels were permeabilised with 2 mM sodium chloride (NaCl), 1.5 mM magnesium chloride (MgCl₂), 16 mM sucrose and 0.5% Triton-X100 in PBS (all from Sigma-Aldrich) for 10 min at 4°C under rotation and washed with 1% PBS three times. Hydrogels were then stained with phalloidin-fluorescein isothiocyanate (phalloidin-FITC) solution at 1.25 µg/mL (diluted 1:400, Sigma Aldrich) to stain the actin cytoskeleton and DAPI dilactate (diluted 1:2000, Sigma Aldrich) to stain the nucleus and rinsed again with 1% PBS solution. Confocal scans were taken using a confocal microscope (Olympus Fluoview FV1000) at magnifications of 10 × for the hydrogel surface, 20 × and 40 × for cells below the hydrogel surface.

Maximum intensity images were generated from z-stacks taken at 20 × magnification with a distance of 5 µm between each slice for a thickness of 25 µm, while 40 × magnification z-stacks were taken at a distance of 2.5 µm between each slice for a thickness of 10 µm. All stacks were obtained at the same distance of 50 µm below the hydrogel surface. In total 15 stacks were obtained at each time-point, for each condition (five on each replicate hydrogel).

Cell processes were defined as cellular features composed of actin, located at the cell membrane, which extended for a distance of at least 10 µm from the cell body, as previously described (Mullen et al., 2014). Cells at later time-points, day 21 and 56 that retained a strong fluorescent actin cytoskeleton and also maintained a cell body were classified as “active”, while cells that demonstrated a balled up and encapsulated morphology with a cell diameter less than 15 µm were classified as “dormant”. Using this classification method cell morphologies were quantified as follows: (1) “dendritic” cells exhibited the small cell body and long thin cell processes associated with osteocytes, (2) “spherical” cells had no cell processes and exhibited a spherical or cuboidal morphology, (3) “dendritic interconnected” cells represented the number of cell process that formed interconnections with neighbouring cell processes and (4) “dividing” cells represented splitting cells within the hydrogel that remain connected. Cell morphology was quantified using NIH ImageJ software particle analysis. After 2.5 h and 21 d average cell span was determined from the diameter of the dendritic cell. By day 56, individual dendrites were manually measured and average dendrite length was determined.

Live cell imaging to track exploratory dendrites

During the 56 d culture period live cell images of the same location within hydrogels were taken at 20 × magnification using an Olympus IX50 inverted brightfield microscope. The same cell locations were identified by scoring the bottom of 96-well plates with a grid, indicating the x and y coordinate, and through focusing within the z plane to identify the same cells. Images were taken every 3-4 d.

DMP-1 immunofluorescent staining

DMP-1 is a secreted protein that is upregulated during osteoblast to osteocyte differentiation and has been observed in late stage osteoblast (DSouza et al., 1997; Feng et al., 2002) and early stage osteocytes (Dallas and...
Formation of an interconnected osteocyte network

Bonewald, 2010; Lee et al., 2014; Narayanan et al., 2003; Rios et al., 2005). Immunofluorescent staining for DMP-1 was conducted to investigate the phenotypic differentiation of MC3T3-E1 cells.

Hydrogel constructs were fixed using 4 % paraformaldehyde (Sigma-Aldrich) after 21 and 56 d of culture for 1 h under rotation. Cells within the hydrogels were permeabilised with 2 mM sodium chloride (NaCl), 1.5 mM magnesium chloride (MgCl2), 16 mM Sucrose and 0.5 % Triton-X100 in PBS (all from Sigma-Aldrich) for 10 min at 4 °C under rotation and washed in PBS 3 times. Hydrogel constructs were covered with a 10 % bovine serum albumin (BSA) / 3 % normal goat serum (NGS) (Jackson ImmunoResearch) blocking solution for 1 h under rotation before incubation with monoclonal anti-DMP1 antibody at a dilution of 1:100 at 4 °C overnight (Clone 8G10.3, Millipore). After washing 3 times with 1 % BSA/PBS solution, samples were then treated with a Dylight™ 549 conjugate goat anti-mouse secondary antibody at a dilution of 1:100 (Jackson ImmunoResearch) for 1 h under rotation at room temperature. After secondary staining, samples were rinsed 3 times with 1 % BSA/PBS solution. Hydrogels were then further counterstained with phalloidin-FITC at 1.25 µg/mL (diluted 1:400, Sigma Aldrich) to stain the actin cytoskeleton and DAPI dilactate (diluted 1:2000, Sigma Aldrich) to stain the nucleus and rinsed again with 1 % BSA/PBS solution. Confocal scans were taken using a confocal microscope (Olympus fluvioview) at 10× and 40× magnification. Z-stacks were combined together in 2D to form maximum intensity images. Negative controls were performed by omitting the primary antibody incubation step.

Extracellular ALP content

Extracellular alkaline phosphatase (ALP) activity was determined using a colorimetric assay of enzyme activity (SIGMAFAST p-NPP Kit, Sigma Aldrich), which uses p-nitrophenyl phosphate (pNPP) (nmol) as a phosphatase substrate, with ALP enzyme (Sigma Aldrich) as a standard. Prior to medium change, medium was removed from samples at each time-point and frozen and stored at −80 °C, 40 µL of the medium was added to a 96-well plate in triplicate with a 50 µL of pNPP solution, which contains both pNPP and assay buffer. The samples were shielded from direct light at room temperature for 1 h. After this, 20 µL of Stop Solution (3 M NaOH) was added to the wells and the plate was read at 405 nm in a Synergy HT Multi-mode microplate reader. Results were then normalised to cell number (µg) as determined through the Hoescht assay outlined above and expressed as nmol/µg.

Mineralisation

Mineralisation within hydrogel constructs was determined from calcium deposition and measured using the Calcium Liquicolour kit (Stanbio Laboratories, Syntec, Dublin, Ireland) according to the manufacturer’s protocol. After 21 and 56 d of incubation, cell laden hydrogels were washed twice with PBS, frozen and stored at −80 °C. Hydrogel samples were then thawed and digested by adding 16.6 µL of 6 M hydrochloric acid (HCL) (Sigma-Aldrich) to each well and storing the solution at 4 °C, when completely dissolved HCL concentration was adjusted to 0.5 M HCL by adding 183.4 µL of ddH2O to each sample. 10 µL each of the digested samples and assay standard was added to a 96-well plate and 200 µL of the working solution. The plate was read on a synergy HT Multi-mode microplate reader at an absorbance of 550 nm as previously described.

Statistics

All biochemical experiments were conducted in biological triplicate with two independent experiments run for a total of n = 6. Cell morphology experiments were conducted in duplicate with two independent experiments run for a total of n = 4. Results are expressed as mean ± standard deviation. For all the biochemical analyis two-way analysis of variance (ANOVA) was conducted, followed by pair-wise multiple comparison procedure (Tukey’s HSD test). All analyses were performed with Graphpad Prism 6 (GraphPad software, San Diego, USA). For all comparisons, the level of significance was p ≤ 0.05.

Results

Compressive modulus

Compressive testing of varied stiffness of hydrogels showed an increase in stiffness with varied cross-linking concentration after incubation for 1 h at 37 °C, see Fig. 2. Mtgase hydrogels containing 0.03, 0.06, 0.08, 0.15, 0.2 % mtgase had compressive moduli of 0.58 ± 0.1, 0.84 ± 0.1, 1.47 ± 0.3, 3.05 ± 0.2 and 3.03 ± 0.4 kPa, respectively. The effect of increasing cross-linking density on hydrogel stiffness reached a plateau at 0.15 % mtgase crosslinking. We sought to encapsulate cells in a similar mechanical environment to our previous studies using 2D substrates (~ 0.3 kPa), which were shown to elicit osteoblast-osteocyte differentiation (Mullen et al., 2013). The compressive moduli 0.58 kPa was the lowest achievable stiffness in this 3D environment, while a higher matrix stiffness (1.47 kPa) was selected from the gels that were crosslinked at different densities, see Fig. 2, on the basis that it was statistically significantly higher matrix stiffness (1.47 kPa) compared to the low matrix stiffness.

DNA content

DNA content increased significantly in all matrix stiffness and cell density groups from 2.5 h to 56 d of culture (p < 0.0001), see Fig. 3. By day 56 in the medium cell density group (1 × 106 cells/mL) a significant difference was observed between the low and high matrix stiffness (3.28 ± 1.02 µg vs. 2.53 ± 0.55 µg, p < 0.03).

Morphological analysis of cell phenotype

MC3T3-E1 morphology and dendritic cell span after 2.5 h MC3T3-E1 cells cultured at low and medium cell densities within low stiffness matrices (0.58 kPa) showed a similar morphological pattern with approximately 81.5 % classed as spherical and 18.5 % as having a dendritic morphology after 2.5 h (p < 0.0001). However, cells cultured within a high stiffness matrix (1.47 kPa) at a low and medium cell density were classified as being approximately 99 % spherical and 1 % dendritic (p < 0.0001). In the
high cell density groups, within a low stiffness hydrogel (0.58 kPa), cells were classed to be 71.5% spherical and 28.5% dendritic ($p < 0.0001$). In contrast, cells within the high stiffness matrices were classed as 97% spherical and 3% dendritic ($p < 0.0001$). Furthermore, for all cell density groups a larger percentage of dendritic cells were observed in the low stiffness matrices compared to the higher stiffness ($p < 0.0012$), see Fig. 4A for representative images and Fig. 4B for summarised results.

After 2.5 h, dendritic cell span in the low stiffness matrices within each cell density had similar cell span lengths, though not significantly different, 58 µm in the low cell density, 56 µm in the medium cell density and 64 µm in the high cell density, while no change occurred in the higher matrix stiffness hydrogels remaining at approximately 24 µm, see Fig. 4C.

For a low cell density and a low stiffness matrix, 52% of the cells were classified as spherical, while 48% of cells were dendritic after 21 d. In contrast, for a high stiffness matrix, 82.6% of cells were spherical, while 17.4% of cells were dendritic ($p < 0.0001$). Cells cultured at medium and high cell densities within a low stiffness matrix showed a similar morphological pattern with approximately 24% classed as spherical and 76% as dendritic morphology for both seeding densities ($p < 0.0005$). In contrast within the high stiffness matrix, at a medium and high cell density, approximately 94% cells were spherical and 6% dendritic ($p < 0.0001$). Additionally, all cell density groups showed a significant increase in the percentage of dendritic cells in the low stiffness matrices compared to the high stiffness ($p < 0.0386$), see Fig. 5A for representative images and Fig. 5B for summarised results.

Dendritic cell span in the low stiffness matrices showed a trend of increasing as cell density increased though not significantly different. Specifically the cell span was 60.1 µm in the low cell density, 67.7 µm in the medium cell density and 82.2 µm in the high cell density. A smaller change occurred in higher stiffness matrices, 46.7 µm in the

Fig. 2. Mechanical properties of a 3% Gelatin hydrogel crosslinked with 0.15, 0.03, 0.06, 0.08, 0.15, 0.2% mtgase after 1 h of incubation at 37 °C, $n = 8$ per group. *$p < 0.05$ relative to 0.03% mtgase hydrogel.

Fig. 3. DNA content of each group at 2.5 h, 3, 21 and 56 d ($n = 6$ samples per group per time-point). *$p < 0.05$ representing a statistical difference between low (0.58 kPa) and high (1.47 kPa) stiffness. Error bars denote standard deviation.
low cell density, 50.3 µm in the medium cell density and 56.4 µm in the high cell density, though not significantly different. A significant difference was observed between the low and high matrix stiffness at the high cell density group (p < 0.0491), see Fig. 5C.

MC3T3-E1 morphology, dendritic cell length and interconnections after 56 d

By 56 d, in all hydrogel groups, cells formed a confluent layer at the surface of the hydrogels, see Fig. 6 and Fig. 7. Below the surface, at low and medium cell densities within a low stiffness matrix, cells showed similar morphology patterns with approximately 24 % spherical and 76 % dendritic (p < 0.0001). However, cells cultured within a high stiffness matrix at a low and medium cell density were classified to be approximately 60 % spherical and 40 % dendritic, though not significantly different. For a high cell density and a low stiffness matrix, 14.6 % were classed as spherical, while 85.4 % were dendritic (p < 0.0001). In contrast, cells within a high stiffness matrix were 64.6 % spherical and 34.4 % dendritic (p < 0.0148). Similarly to day 21, a larger percentage of dendritic cells were observed in the low stiffness matrices compared to the high stiffness in all cell density groups (p < 0.0093), see Fig. 8A for representative images and Fig. 8B for summarised results.

Fig. 4. Actin staining of cell morphology after 2.5 h of culture comparing spherical vs. dendritic (Red arrows) morphology (A). Also shown is the percentage of spherical vs. dendritic cells (B) and average dendritic cell span (C) within low (0.58 kPa) and high (1.47 kPa) stiffness matrices. *p < 0.05 representing a statistical difference between low (0.58 kPa) and high (1.47 kPa) stiffness at the same density group. Scale bar = 50 µm, same for all images.
At 56 d, average individual dendrite length within the low stiffness matrices was 46.2 µm in the low cell density, 53.9 µm in the medium cell density and 67.2 µm in the high cell density. Dendrite length in higher stiffness matrices was 35.7 µm in the low cell density, 36.9 µm in the medium cell density and 29.3 µm in the high cell density. Furthermore, a significant difference was observed between the low and high matrix stiffness at the high cell density group (p < 0.0095), see Fig. 8C.

Cell interconnections after 56 d

Cells at a high cell density within a low stiffness matrix had the highest number of interconnections between neighbouring dendritic cells compared to the high stiffness matrix at the same density (p < 0.037). Cells were classified as 38.8 % interconnected, whereas 30.9 % were unconnected and 30.3 % connected as dividing cells. For the higher stiffness matrix at the same cell density 4.6 % of cells were interconnected, 89.1 % were unconnected and 6.3 % connected as dividing cells. At a medium cell density, within a low stiffness matrix, cells were approximately classified as 16.5 % interconnected, while 32 % were unconnected and 51.5 % connected as dividing cells. For the higher stiffness matrix at the same cell density 2.8 % of cells were interconnected, 71.9 % were unconnected and 25.3 % connected as dividing

Fig. 5. Actin staining of cell morphology after 21 h of culture comparing spherical vs. dendritic (Red arrows) morphology (A). Also shown is the percentage of spherical vs. dendritic cells (B) and average dendritic cell span (C) within low (0.58 kPa) and high (1.47 kPa) stiffness matrices. *p < 0.05* representing a statistical difference between low (0.58 kPa) and high (1.47 kPa) stiffness at the same density group. Scale bar = 50 µm, same for all images.
cells. For the low cell density within a low stiffness matrix 6.9 % of cells were interconnected, while 36.5 % were unconnected and 56.6 % connected as dividing cells. For the higher stiffness matrix at the same cell density 4.6 % of cells were interconnected, 89.1 % were unconnected and 6.3 % connected as dividing cells, see Fig. 8D.

Exploratory dendrites live cell imaging
Cell dendrite formation was observed after 1 h of incubation within the lowest stiffness hydrogel. Dendrite formation was observed to increase with time. Dendrites were observed to be highly dynamic as cells repeatedly formed interconnections, extended and retracted their dendrites over the culture period. It was also observed that individual cells were active and viable throughout the entire 56 d culture period without proliferating, see Fig. 9A, 9B. However, it was also observed that an individual cell that initially exhibited a dendritic morphology, could became balled up, reduce in size and remain in the hydrogel for the 56 day culture period (Fig. 9A, black arrows). These cells were referred to as “dormant” due to showing no normal cell activity (dendritic, motile, change in cell morphology, etc.) throughout the culture period.

DMP-1 immunofluorescent staining
Immunofluorescent staining for DMP-1 showed positive expression of DMP-1 within the proximity of cells encapsulated within the soft stiffness matrix (0.58 kPa), see Fig. 10. At 10 × magnification, DMP-1 staining was observed within the proximity of dendritic and interconnected cells at a medium cell density, see Fig. 10B. At 40 × magnification, at a low and high cell density, DMP-
1 staining was observed within matrices at day 21 and 56 (Fig. 10C-F). DMP-1 staining, at the high cell density was observed as dispersed nodules within the surrounding matrix of dendritic and interconnected cells (blue arrows) (Fig. 10E, 10F). DMP-1 staining was not observed in the negative control, where the primary antibody was omitted (Fig. 10A).

ALP activity of cells
Extracellular alkaline phosphatase activity by day 3 showed a significant increase for the low cell density group within both the low and high stiffness matrices compared to all other groups at the same time-point ($p < 0.0001$). Furthermore, at a low cell density a significant increase in ALP activity was also observed in the high stiffness matrix compared to the low stiffness matrices ($15.18 \pm 2.1 \text{ nmol/µg vs. } 12.31 \pm 1.22 \text{ nmol/µg, } p < 0.0002$). Similarly, by day 21 significantly higher ALP activity was observed within the low cell density groups for both the low and high stiffness matrices compared to the other groups at the same time-point ($p < 0.0002$). By day 56, ALP activity was downregulated in all groups with no significant difference between groups, see Fig. 11.

Mineralisation
Calcium content in the high cell density group within a low and high stiffness matrix showed a significant increase in mineralisation from day 21 to 56 ($p < 0.05$). By day 56, significantly higher calcium content was observed in the high cell density group within both the low and high stiffness matrix compared to the other groups at the same time-point ($p < 0.05$). Furthermore, a significant difference ($p < 0.0287$) in calcium content was observed between the low and high matrix stiffness ($29.23 \pm 7.38 \mu g$ vs. $20.3 \pm 10.06 \mu g$), see Fig. 12.

Discussion
The results of this study show for the first time that osteocyte differentiation of MC3T3-E1 cells is regulated within a 3D cell environment by ECM stiffness and cell density. Specifically, we showed that the highest extent of osteoblast-osteocyte differentiation occurred within a soft 3D matrix (0.58 kPa) at high cell density ($2 \times 10^6 \text{ cells/mL}$). Interestingly, after 56 d of culture these conditions led to the formation of an osteocyte-like network within the 3D matrix, characterised by long dendrites interconnecting with neighbouring osteocytic cells. DMP-1, a secreted protein that is upregulated during osteoblast to osteocyte differentiation, was identified within the matrix by immunohistochemistry. At the surface of this matrix cells formed a confluent layer, characteristic of osteoblast-like cells, which was also interconnected with the osteocyte-like network. Bone has a similar structure in vivo, wherein osteocytes form a complex interconnected network allowing for communicating with their neighbours and with osteoblasts cells on bone surfaces via long cellular...
processes. Within a stiffer matrix (1.47 kPa) at a low cell density, dendrite formation occurred but these dendrites were shorter and a reduced interconnecting network was established. These findings reveal that both the mechanical properties of ECM and the ability for cells to establish a communication network within a 3D environment, play a significant role in osteocyte differentiation and the formation an interconnected network.

Cell migration, proliferation and differentiation have all been shown to be influenced by substrate (2D) or matrix (3D) stiffness (Engler et al., 2004; Hadjipanayi et al., 2009; Lo et al., 2000; Mullen et al., 2013; Tan et al., 2014; Zaman and Trapani, 2006). In particular, a soft 2D substrate (0.3 kPa) was shown to lead to osteocyte differentiation (Mullen et al., 2013), whereas more rigid 2D substrates (40 kPa) favour osteoblast differentiation (Engler et al., 2004). Osteoblast to osteocyte differentiation has been previously elicited in human primary osteoblast-like cells within 3D collagen gels, with 10% of cells becoming dendritic and expressing osteocyte-specific gene E11 after 28 d (Atkins et al., 2009). Primary mouse calvarial and MC3T3-E1 cells formed dendrites and expressed osteocyte-specific genes (DMP1, Sost, Phex) after 35 d on type I collagen gels with osteogenic supplements (β-glycerophosphate and ascorbic acid) (Uchihashi et al., 2013). The mouse clonal cell line (IDG-SW3) developed dendrites and expressed osteocytic markers (DMP1, Sost) after 30 d on 3D collagen sponges (Woo et al., 2011). Osteoblast-osteocyte differentiation, has been induced in human osteoblasts cultured in 3D with hydroxyapatite/tricalcium phosphate biphasic calcium phosphate ceramic particles (Boukhechba and Balaguér, 2009). However, these

Fig. 8. Actin staining and particle analysis illustrations of cell morphology after 56 d of culture comparing spherical vs. dendritic morphology (A) within low (0.58 kPa) and high (1.47 kPa) stiffness matrices. Also shown is the percentage of spherical vs. dendritic cells (B), average cell dendrite length (C) and percentage of interconnections formed between cells (D). *p* < 0.05 representing a statistical difference between low (0.58 kPa) and high (1.47 kPa) stiffness at the same density group. Scale bar = 100 µm.
studies did not characterise the mechanical properties of the 3D matrix and could not uncover the role of the mechanical environment for eliciting osteocyte differentiation. The hydrogel stiffness used here (0.58/1.47 kPa) are within the range of gelatin-mtgase hydrogels (1.58/32.32 kPa) used to elicit differentiation of mouse myoblast cells towards osteoblasts (Tan et al., 2014), which showed osteoblast-like cells became elongated at stiffnesses of 1.58 kPa, but were spherical at higher stiffnesses (32.32 kPa) (Tan et al., 2014). In the current study we show for the first time that osteocyte differentiation and the formation of interconnections is governed by soft 3D matrices (0.58 kPa). In contrast to previous studies, these results were achieved without addition of osteogenic growth factors.

In vivo, osteocytes are formed when osteoblasts become embedded within soft secreted osteoid and undergo a dramatic phenotypic transition to a dendritic shape (Knothe Tate et al., 2004; Palumbo et al., 2004), secrete DMP-1 protein, and form interconnections with neighbouring and surface cells to establish the osteocyte network. Interestingly, we observed the same traits of a dramatic phenotypic transition to a dendritic shape, DMP-1 expression and formation of an osteocyte network in cells cultured within a soft matrix. We propose that the

Fig. 9. (A) Live cell imaging of a low stiffness matrix at a high cell density show cells (green cells) to be highly dynamic and constantly sending out exploratory dendrites (red arrow) throughout the study, while at the later time-points the same cells formed interconnections with neighbouring cells (blue cells). Furthermore, cells that became balled up and encapsulated (Black arrows), were observed to remain balled up within the hydrogel throughout the 56 d culture period and were classified as dormant. (B) Fluorescent imaging at day 56 show interconnections formed between cells (blue arrow).
Fig. 10. Immunofluorescent images of DMP-1 from cells encapsulated in a hydrogel at a low matrix stiffness (0.58 kPa). (A) Negative controls were performed by omitting the primary antibody and no DMP-1 staining was observed. (B) DMP-1 staining was observed within the proximity of dendritic and interconnected cells at a medium cell density (10 × magnification). At a low (C, D) and high (E, F) cell density, DMP-1 staining was observed within matrices at day 21 and 56 (40 × magnification). DMP-1 staining, at the high cell density (E, F) was observed as dispersed nodules within the surrounding matrix of dendritic and interconnected cells (Blue arrows, 40 × magnification). Images were taken at approximately 50 µm below the hydrogel surface. Scale bar for 10 × (A, B) = 120 µm; 40 × (C, D, E, F) = 50 µm.

Fig. 11. Extracellular ALP activity of each group at day 3, 21 and 56 (n = 6 samples per group per time-point). *p < 0.05 relative to the other cell density groups at the same time-point and **p < 0.05 representing a statistical difference between low and high stiffness. Error bars denote standard deviation.
Calcium content of each

2013). Human marrow-derived MSC
et al., 2009). We previously reported that
(Mullen et al., 2005),
= Fig. 12). and other
smith et al., 1998).

formed in neuron cells (Kalajzic et al., 2006; Previtera et al., 2001). Interestingly, DMP-1 expression has also been

in vivo.

Previous in vitro studies have shown the significance of cell density on osteogenic cell differentiation. Rat bone marrow stromal cells (BMSC) grown at low density (7.5 × 10⁴ cells/cm²) for 8 d on 2D poly(propylene fumarate), expressed higher amounts of ALP activity compared to cells at a high density (14.9 × 10⁴ cells/cm²) (Kim et al., 2009). We previously reported that MC3T3-E1 cells cultured at low density (0.1 × 10⁴ cells/cm²) had higher ALP activity compared to those at high density (1 × 10⁵ cells/cm²), albeit that higher amounts of mineralisation were reported for the low seeding density (Mullen et al., 2013). Human marrow-derived MSC cells and MG-63 osteosarcoma cells encapsulated at low densities (2 × 10⁶/3 × 10⁶ cells/mL) within 3D collagen/alginate gels had higher ALP activity than cells seeded at higher densities (1 × 10⁶/15 × 10⁶ cells/mL) (Bitar et al., 2008; Maia et al., 2014). Here we showed that a low density (0.4 × 10⁶ cells/cm² ~ 0.25 × 10⁶ cells/mL) lead to higher ALP production after 3 d, compared to cells seeded at a high density (1.6 × 10⁶ cells/cm² ~ 2 × 10⁶ cells/mL).

Furthermore, we observed an increase in calcium content in the high cell density (1.6 × 10⁶ cells/cm² ~ 2 × 10⁶ cells/mL) group within a low and high stiffness matrix compared to the other groups by 56 d.

The osteocyte network is analogous to the neuronal network, whereby neurons extend long interconnected dendrites. Studies have shown an increase in the percentage of neurons on 2D substrates (0.25-7 kPa) (Georges et al., 2006; Previtera et al., 2010), while in soft 3D agarose gels (~0.002 kPa) increased elongation rates of neurites relative to stiff gels (~0.13 kPa) have been observed (Balghude et al., 2001). Interestingly, DMP-1 expression has also been observed within the brain, suggesting strong ties with dendrite formation in neuron cells (Kalajzic et al., 2004).

Therefore, we propose that the formation of a dendritic interconnected network within both neurons and osteocytes is driven by ECM stiffness and cell density.

Our results show that cells within a soft 3D matrix are dispersed throughout long-term culture and form interconnections with neighbouring cells (Fig. 4A & Fig. 5A), whereas those near the surface proliferate and form a confluent layer on the surface of the hydrogel, see Fig. 7. Similarly, HepG2 cells proliferate more when grown on 2D collagen substrates than when encapsulated within a 3D alginate gels (Lan et al., 2010). It is intriguing to speculate on the potential mechanisms by which embedded cells form dendrites and interconnected networks inside gelatin hydrogels. Our live cell results (Fig. 9A) and other studies (Balghude et al., 2001; Dallas et al., 2013; Dallas and Bonewald, 2010; Shahar and Dean, 2013; Webster et al., 2013) have shown that osteocytes and neurites are highly dynamic and repeatedly extend and retract their dendrites, and can establish connections with neighbouring cells through gap junctions (Doty, 1981; Palumbo et al., 2004) to form interconnected networks. Osteocyte dendrite formation is highly dependent on continuous cleavage of collagen through enzymes known as matrix metalloproteinases (MMPs) (Holmbeck et al., 2005), which are expressed by osteocytes (Hatori et al., 2004). Interestingly, matrix degradation through MMP activity has been shown in gelatin gels (d’Ortho et al., 1998). Therefore, we propose that osteoblastic cells encapsulated with softer matrices form dendrites and express MMPs to degrade the matrix macromolecules, allowing for the dendrite to perforate through the matrix. The higher degree of crosslinking between matrix macromolecules in the high stiffness group might present a matrix that is more difficult to degrade and thus explain the lower proportion of dendritic cells in these matrices.

The use of osteoblast-like MC3T3-E1 cell-line is a possible limitation of this study. However, isolating primary osteoblasts can produce inhomogeneous cell populations and osteoblast-specific features can be lost.

Fig. 12. Calcium content of each group at days 21 and 56 (n = 6 samples per group per time-point). *p < 0.05 relative to the other cell density groups at the same time-point. †p < 0.05 relative to the other matrix stiffness groups at the same time-point. Error bars denote standard deviation.
upon subcultivation (Leis et al., 1997; Quarles et al., 1992). The MC3T3-E1 osteoblast cell line represents a uniformly defined cell population, which have similar traits to primary cells and can be readily expanded (Czekanska et al., 2012) and differentiated (Chatterjee et al., 2010; Keogh et al., 2010; Krishnan et al., 2010; Mullen et al., 2013; Partap et al., 2010; Przyblyowski et al., 2012; St-Pierre et al., 2005; Uchihashi et al., 2013), making the cell line a good representative of pre-osteoblasts (Grigoriadis et al., 1985; Quarles et al., 1992; Sudo et al., 1983; Wang et al., 1999).

It should be noted that ALP activity was only assessed from extracellular ALP in the media at specific time-points and thus might not be a reflection of the total ALP activity. Finally, we did not investigate precisely the mechanical environment that arises during osteocyte differentiation in vivo or the mechanical environment known to elicit osteoblast-osteocyte differentiation in 2D (~0.3 kPa) (Mullen et al., 2013). However, the mechanical properties of osteoid are unknown, as newly laid down osteoid tissue represents a thin layer approximately 350 nm deep, which has made the extraction of samples for mechanical testing unfeasible. Moreover, maintaining a homogeneous cell distribution in a low stiffness 3D matrix (~0.3 kPa) proved challenging as the cells settled at the bottom of the well before gelling occurred, whereas 0.58 kPa was found to be the lowest achievable matrix stiffness to avoid settling from occurring. Nonetheless the results of this study showed that osteocyte differentiation of MC3T3-E1 cells was indeed regulated within a 3D cell environment by ECM stiffness and cell density.

Various in vitro bone TE approaches, including porous biomaterial scaffolds (Correia et al., 2012; Curtin et al., 2012; Gleeson et al., 2010; Keogh et al., 2010), cellular aggregates (Freeman et al., 2015; Fuchs et al., 2007; Rouwkema et al., 2006) and cell encapsulation within hydrogels (Castillo Diaz et al., 2014; Chatterjee et al., 2010; Shin et al., 2014; Tan et al., 2014), have shown potential for bone regeneration, as indicated by osteogenic protein and mineral production. However, none of these have reported substantial osteocyte differentiation, dendrite formation or interconnected osteocyte networks within the constructs. The approach developed here may be a promising tool to reproduce bone constructs with an osteocyte network in place, which is an essential component in the formation of bone and the treatment of large bone defects.

Conclusion

The results of this study show that external biophysical and biochemical cues, such as matrix stiffness and cell density, control the phenotypic shift from osteoblasts to osteocytes in a 3D environment. For the first time MC3T3-E1 osteoblast cells, at a seeding density of 2 × 10^5 cells/mL within a soft 3D matrix (0.58 kPa), have been induced to undergo osteocyte differentiation and form an interconnected network by 56 d of culture. On the matrix surface a confluent layer, representative of osteoblastic differentiation, was established. These results were achieved without the addition of growth factors. We propose that the encapsulation of cells within a soft matrix simulates the in vivo environment, wherein osteoblasts start to differentiate towards osteocytes after they have become embedded within osteoid, a soft unmineralised bone matrix. Future TE approaches could apply this method to develop bone constructs with an osteocyte network in place.

Acknowledgements

This project was supported by the European Research Council Grant 258992 (BONEMECHBIO). The authors acknowledge the facilities and scientific and technical assistance of the Centre for Microscopy & Imaging at the National University of Ireland Galway (www.imaging.nuigalway.ie), a facility that is funded by NUIG and the Irish Government’s Programme for Research in Third Level Institutions, Cycles 4 and 5, National Development Plan 2007-2013.

References

osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 31: 5051-5062.

Soares CP, Midleij V, de Oliveira ME, Benchimol M, Costa ML, Mermelstein C (2012) 2D and 3D-organized cardiac cells shows differences in cellular morphology, adhesion junctions, presence of myofibrils and protein

Discussion with Reviewer

Reviewer I: In your previous work, evaluating the effect of cell density and material stiffness on osteocyte differentiation in 2D (Mullen et al., 2013), the authors showed that low cell density favoured osteocyte differentiation, while high cell density preserved osteoblast phenotype. Could the authors speculate why different results were achieved within the current manuscript evaluating osteocyte differentiation in 3D?

Authors: In our previous work (Mullen et al., 2013) we studied cells seeded on a flat 2D surface at a low initial cell density of 1,000 cells/cm². The cells were shown to maintain a low cell density for the 14 d experiment. We proposed that the initial low cell density and the mechanics of the substrate together prevented cells from proliferating sufficiently and after a time resorted to extending processes to establish a communication network with neighbouring cells. However, in our 3D environment 2 million cells were initially encapsulated in a 1 cm³ volume of gelatin-mtgase matrix. If all cells were successfully encapsulated and remained viable, we would expect an initially high cell density of approximately 16,000 cells/cm². However, we did observe that approximately 80% of cells were “dormant” at day 21 in the soft matrix stiffness at the high cell density group (data not shown), showing no normal cell activity (dendritic, motile, change in cell morphology, etc.) throughout the culture period, and these were excluded from further analysis. Therefore, the active population of osteoblasts/osteocytes might be closer to 3,200 cells/cm². Moreover, in the 3D environment the cells are confined on all sides by the gelatin-mtgase matrix, limiting the differentiation into osteocytes as the cells need to degrade the surrounding matrix to create space for dendrites. Thus, it is not possible to fully compare the cell densities between the 2D and 3D environments. However, the different results achieved within the current manuscript, i.e. high initial cell density favoured osteocyte differentiation, are likely explained due to a combination of the large population of inactive cells and the presentation of a 3D mechanical environment during cell encapsulation, which will place further spatial constraints on the extension of dendrites. Other studies have shown that cell encapsulation within a 3D matrix can prevent proliferation in cell types such
as, cardiac cells, human embryonic stem cells and HepG2 liver cells (Lan et al., 2010; Soares et al., 2012; Tian et al., 2008).

Reviewer I: Did the authors see the formation of a surface-cell-layer already earlier than day 56? Could you speculate on the formation of this layer – de-differentiation of cells, or just migration and subsequent cell proliferation?

Authors: A low confluence surface layer of cells was observed by approximately 20-30 d in the high cell density groups, whereas in the other cell density groups the surface layer formed at approximately 30-40 d. The surface layer of cells was not present at earlier time-points; however, a homogenous distribution of cells was observed throughout the hydrogel including cells encapsulated near the surface of the hydrogel after fabrication. Based on these observations, the authors propose that cells near the surface migrated out of the hydrogel and then started to proliferate at the surface, forming a confluent layer over the rest of the culture period.

Reviewer I: The authors report increased mineralisation in the high-cell-density group. Would the authors suspect an increase in matrix stiffness in this group that is superior over the other groups?

Authors: Mineral concentration is a key determinant of the mechanical properties of bone (Currey, 1984; Ruffoni et al., 2007). Increase in matrix stiffness due to mineralisation has been observed in silk scaffolds seeded with human bone marrow stem cells (Kim et al., 2007), polyurethane scaffolds seeded with MLO-A5 osteoblastic cells (Sittichockechaiwut et al., 2009) and also in peptide hydrogels containing encapsulated human osteoblasts cells (Castillo Diaz et al., 2014). Thus the authors would expect an increase in matrix stiffness compared to the other cell density groups at that stiffness.

Reviewer I: Could the authors speculate on the role of matrix stiffening during late osteocyte differentiation?

Authors: Osteocyte differentiation and matrix stiffness are inextricably linked. In vivo, osteoblasts primarily lay down a soft collagen matrix known as osteoid, onto which mineral crystals are subsequently deposited (Barragan-Adjemian et al., 2006). However, there is a mineralisation lag time, which allows for osteoblasts to become embedded in the soft collagen matrix. During this time the osteoblasts transition into early stage osteocytes. Both osteoblasts on the surface and differentiating osteocytes release phosphate ions, which in turn results in mineral crystal growth and will hence the increase in matrix stiffness (Barragan-Adjemian et al., 2006). The stiff calcified osteoid acts as a mediator of mechanical stimulation to the osteocyte through load induced fluid flow and cell-ECM interactions within the lacunar-canalicular system (McNamara et al., 2009; Wang et al., 2007). Studies have shown changes in gene expression that coincide with mineralisation. Increased levels of early osteocyte markers, such as E11/gp38/podoplanin and dentin matrix protein 1 are expressed after the cell becomes embedded within the soft matrix and continues to increase with mineralisation along with sclerostin, a marker of the mature osteocyte, expressed when the cell is completely surrounded by dense calcified matrix (Bonewald, 2011; Dallas et al., 2013). It is intriguing to postulate that the development of a stiff matrix around the osteocyte and the ensuing change in mechanical stimulation would facilitate the terminal differentiation of the early stage osteocyte into an interconnected osteocyte that is mechanosensitive to its surrounding environment. However, as the change in matrix stiffness is itself caused by osteocyte differentiation future studies would be required to fully delineate the cause-effect relationships.

Additional References

Editor’s Note: Scientific Editor in charge of the paper: Martin Stoddart.