Title | Revealing hidden details of the ancient landscape at Newgrange, Brugh na Bóinne World Heritage Site, Co. Meath
---|---
Author(s) | Fenwick, Joseph P.; Warner, Richard; Eogan, George
Publication Date | 2009
Publisher | Meath Archaeological and Historical Society
Link to publisher's version | https://www.mahs.ie
Item record | http://hdl.handle.net/10379/7317

Downloaded 2019-01-28T18:34:51Z

Some rights reserved. For more information, please see the item record link above.
Introduction

Ressources

Abstract

September 2008

(The Bridge na Brinnghe Reseacch Project)

Joel PERRY, NICHOLAS WATANABE & GEORGE BOGAN

Co. Meath

Brugh na Brinnghe World Heritage Site

ancient landscape at Newgrange,

Revealing hidden details of the

The Bridge na Brinnghe Research & Analysis Project has completed its first five-year programme of research and exploration, and in the vicinity of the

Acknowledgements

References

In the course of the preparation of this paper I wish to thank Dr Kenney Clear for all the assistance received during

Proceedings of the Royal Irish Academy 85C, 133-96.


Proceedings of the Royal Irish Academy 76C, 21.


For the references in this note, see the text of the paper.


Proceedings of the Royal Irish Academy 76C, 21.


For the references in this note, see the text of the paper.
The remaining visible external earthworks are approximately 1000 feet west by southwest of the coasts. The maximum external dimensions of the site are approximately 200 feet east by north. The site is located on a hilltop, with the highest point being the south corner. The earthworks are best seen from the air or by aerial photography.

The site is located on a hilltop, with the highest point being the south corner. The earthworks are best seen from the air or by aerial photography.

The site is located on a hilltop, with the highest point being the south corner. The earthworks are best seen from the air or by aerial photography.

The site is located on a hilltop, with the highest point being the south corner. The earthworks are best seen from the air or by aerial photography.

The site is located on a hilltop, with the highest point being the south corner. The earthworks are best seen from the air or by aerial photography.

The site is located on a hilltop, with the highest point being the south corner. The earthworks are best seen from the air or by aerial photography.

The site is located on a hilltop, with the highest point being the south corner. The earthworks are best seen from the air or by aerial photography.
The results can be explained as a consequence of subsurface disturbance by near-surface activities. The test results discussed were originally presented in a paper by W. E. D. (1999) entitled "The effects of near-surface activities on the accuracy of resistivity mapping and on the accuracy of the results obtained when using the test method." The authors concluded that the test results confirmed the necessity of considering near-surface activities when interpreting the results of resistivity surveys. The test results showed that near-surface activities can significantly affect the accuracy of the results obtained when using the test method.

Magnetic susceptibility survey

The results of the magnetic susceptibility survey (Fig. 4) showed that the magnetic susceptibility of the test site was significantly affected by near-surface activities. The magnetic susceptibility of the test site was measured using a magnetic susceptibility meter, and the results showed that the magnetic susceptibility of the test site was significantly affected by near-surface activities. The authors concluded that the magnetic susceptibility survey results confirmed the necessity of considering near-surface activities when interpreting the results of magnetic susceptibility surveys. The results of the magnetic susceptibility survey showed that near-surface activities can significantly affect the accuracy of the results obtained when using the test method.
The magnetic susceptibility map illustrates the distribution of magnetic susceptibility values across the area. The map shows areas of higher susceptibility, indicated by darker shades, and areas of lower susceptibility, indicated by lighter shades.

The geological and geophysical survey data reveal the presence of magnetic anomalies, which are mapped using contour lines. The contours indicate varying levels of magnetic susceptibility, suggesting the presence of sub-surface structures or lithological differences.

The magnetic susceptibility values were determined using a combination of ground-penetrating radar (GPR) and electromagnetic induction (EMI) surveys. The GPR data provided high-resolution images of the subsurface, while the EMI surveys detected variations in the electrical conductivity of the materials present.

Overall, the survey results indicate a complex geological setting with diverse magnetic properties, which may have implications for future exploration and resource management.
The combined magnetic and gravimetric survey area, measuring 350m north.

[Diagram of geological features with north arrow]

...and on which topographical contours.
The text on the page appears to be discussing a complex topic, possibly related to computer science or a similar field. The text is not completely clear due to the quality of the image, but it seems to be discussing the interaction between different components of a system or network. The text mentions the importance of understanding the architecture and components of such systems, and how they are interconnected. There are several technical terms and references to other works, which suggest that this is a scholarly or professional context. The text also touches on the importance of understanding the mathematical and logical underpinnings of these systems. The page number at the bottom suggests this is part of a larger document or book.
The performance of the network is often measured by its accuracy on a test set, which is a subset of the training data not used during training. However, this can be misleading because it does not reflect the actual performance of the network on new, unseen data. The accuracy on the test set can be high even if the network is overfitting the training data and is unable to generalize well on new data.

One way to improve the generalization of a network is to use regularization techniques, such as dropout or weight decay, which can help prevent overfitting. Another approach is to use data augmentation, where samples are randomly modified during training to increase the diversity of the training set.

In summary, it is important to carefully evaluate the performance of a neural network not only on the training and test sets, but also on other metrics such as precision, recall, and F1 score, depending on the specific problem at hand.

[Reference to be added]
Acknowledgements

Port Joint Resourcing and Newforce (Project 98/9).

References

-A Welcome Home: Down for accommodation, food and entertainment

On Chile House, Down for accommodation, food and entertainments

Returning Hidden Depths of the mean landcape of Newforce